Summary:
Carus Proprietary Zinc Phosphate Water Treatment Chemicals are premier corrosion inhibitors for use in potable and industrial water systems. They are mostly liquid concentrates with a few dry blends of exceptional purity, clarity and stability utilizing a blend of zinc-based chemicals and/or phosphoric acid.

Chemical Identity, Chemical Formula and CAS #:
One or more of the following chemicals may be present in each product in this category:

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Chemical Formula</th>
<th>CAS #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoric acid</td>
<td>H₃PO₄</td>
<td>7664-38-2</td>
</tr>
<tr>
<td>Phosphoric acid sodium salt</td>
<td>Na₂HPO₄</td>
<td>7558-80-7</td>
</tr>
<tr>
<td>Polyphosphoric acid, sodium salt</td>
<td>(NaPO₃)₆</td>
<td>68915-31-1</td>
</tr>
<tr>
<td>Sulfuric acid, zinc salt</td>
<td>ZnSO₄</td>
<td>7733-02-0</td>
</tr>
<tr>
<td>Hydrochloric acid, zinc salt (2:1)</td>
<td>ZnCl₂</td>
<td>7646-85-7</td>
</tr>
<tr>
<td>Phosphoric acid, zinc salt (2:3)</td>
<td>Zn₂(PO₄)₃</td>
<td>7779-90-0</td>
</tr>
<tr>
<td>Sulfuric acid, monosodium salt</td>
<td>NaHSO₄</td>
<td>7681-38-1</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>HCl</td>
<td>7647-01-0</td>
</tr>
</tbody>
</table>

What are Carus Proprietary Zinc Phosphate Water Treatment Chemicals and What are They Used for?
The Carus Proprietary Zinc Phosphate Water Treatment Chemicals are liquid or dry products containing one or more of the above mentioned chemicals. The products are prepared by the reaction of raw materials or by blending of two or more chemicals listed above along with water to form a liquid blend product or dry blends of various chemicals available as dry powders. The blended phosphates are a mixture of zinc-based phosphates and are used as an additive to eliminate or prevent corrosion as well as used to isolate and hold unwanted impurities from getting into the water system. They are sold under the trade name of Carus™, QUANTICHEM® or CALCIQUEST® Water Treatment Chemicals.

Carus proprietary zinc phosphate water treatment chemicals are primarily used as an integral part of corrosion control processes used by municipal drinking water authorities or other industries to purify and improve the quality of drinking water as it is distributed to the public. Controlling staining (red water caused by iron-based impurities and black water caused by manganese-based impurities), controlling copper, and controlling lead release to the public is the primary application of phosphate based products.

The main benefits by the use of phosphate products are the following:
1. Extends the operating life of the water distribution system by reducing corrosion and scale formation.
2. Eliminates and/or minimizes the presence of lead, copper, iron and manganese impurities in the municipal drinking water.
3. Increases the water quality by preventing rusty and dirty water, discoloration, staining, mineral buildup, or leaching of heavy metals.
In addition to the water treatment application where Carus products are used, some phosphates are also generally consumed by the public in multiple products. It is found in toothpaste, cola based products, cheeses, as well as leavening agents in baking. Phosphoric acid can be found in many popular soft drinks.

Physical-chemical Properties:

The liquid Carus proprietary zinc phosphate water treatment chemicals are clear, homogeneous acidic solutions, meaning they have a low pH. They have a markedly corrosive action on all body tissues and should be handled with care. Even dilute solutions may be acidic and may have a destructive effect on tissue after prolonged contact. Inhalation of mists can cause damage to the upper respiratory tract. Ingestion can cause sore throat, abdominal pain, nausea, and severe burns of the mouth, throat, and stomach.

The liquid products have a specific gravity of about 1.2-1.6 g/ml. They are of acidic pH (<1) and are corrosive. The dry product blends are powders of either white or off-white color. The bulk densities of the dry blends are approximately 80 lbs/cubic feet and are soluble in water. Both liquid and dry blends are stable under normal conditions. They are not flammable but are reactive because of their corrosive nature. We recommend storing these products away from incompatibles like caustics in a tightly closed container in a cool, dry area and protecting containers from physical damage. Avoid freezing the liquid product blends.

Since they are corrosive, they are stored in high-medium density polyethylene, cross-linked polyethylene, and fiber enforced plastic. It is not compatible with black iron, mild steel, galvanized metals, aluminum, zinc, stainless steel, copper, lead, brass, bronze, tin and other base metals.

Health and Environmental Effects:

The health effects of Carus proprietary zinc phosphate water treatment chemicals are mainly due to its corrosive properties. Carus proprietary blended phosphate water treatment chemicals are corrosive to skin, eyes, or respiratory tract. Contact with skin may cause redness, pain, and severe skin burns. Contact with eyes may cause redness, pain, blurred vision, eye burns, and permanent eye damage. In applications where dust, vapors, or mist are created, inhalation may cause irritation to the respiratory tract. Symptoms may include coughing and shortness of breath. Ingestion may cause sore throat, abdominal pain, nausea, and severe burns of the mouth, throat, and stomach. Severe exposures can lead to shock, circulatory collapse, and death. Phosphates are slowly and incompletely absorbed when ingested, and seldom result in systemic effects. Such effects, however, have occurred. Symptoms may include vomiting, lethargy, diarrhea, blood chemistry effects, heart disturbances and central nervous system effects. The toxicity of phosphates is because of their ability to sequester calcium.

Carus proprietary zinc phosphate water treatment chemicals are expected to be toxic to aquatic life when present in high concentrations, mainly due to its acidic nature. When released into the soil, this material may leach into groundwater. When released to water, natural water hardness minerals may readily reduce acidity. The phosphate, however, may persist indefinitely. During transport through the soil, phosphoric acid will dissolve some of the soil material, in particular, carbonate-based materials. The acid will be neutralized to some degree. However, significant amounts of acid will remain for transport down toward the groundwater table.

Since it is an inorganic compound and contains no degradable functional groups, it exerts no biological oxygen demand.

None of the components have been classified as a carcinogen by ACGIH, OSHA, NTP, IARC, or California Proposition 65.
Exposure Potential:

Carus proprietary zinc phosphate water treatment chemicals are corrosive to all body tissues and they should be handled with care. The most likely ways exposure could occur are:

1. Worker Exposure- Exposure could occur in the manufacturing facility, to transportation personnel, or users in municipal drinking water or waste water treatment facilities and or industrial facilities that use. When exposures occur, they are typically skin, eye or inhalation exposures. Ingestion exposure is not very likely to occur. To minimize the risk of exposure good industrial hygiene practice, engineering controls and the use of personal protective equipment, such as chemical goggles, gloves, and work clothing that covers arms and legs as needed, have been established. Emergency responders such as firefighters could also be exposed to phosphates if they are present during an incident. Normal turnout protective gear for first responders such as positive pressure breathing units, chemical resistant suits, boots and gloves will minimize their risk.

2. Consumer Exposure – Carus Corporation does not sell Carus proprietary zinc phosphate water treatment chemicals in retail stores, although some components present in our products may also be an ingredient in some consumer products from other manufacturers. Public exposure to phosphates is possible through accidents, spills, and inadvertent misuse of the products or overdosing from the municipal water treatment systems.

3. Releases: Non-routine releases to the environment can occur from accidents, spills and inadvertent misuse of the products. If a spill occurs, emergency personnel should wear protective equipment suitable for the task to minimize exposures. Avoid runoff into storm sewers and ditches that lead to waterways. If releases to environment are in CERCLA reportable quantities, report to the required agencies. Clean up spills immediately. Contain spill by collecting the liquid in a pit or holding behind a dam (clay like material or soil). Absorb with inert media and dispose of properly. Flush area with large amounts of water. Do not flush to sewer. Disposal of all materials shall be in full and strict compliance with all federal, state, and local regulations pertaining to phosphates and corrosive liquids.

Risk Management Measures:

The primary mechanism for providing advice on the handling of phosphates is through the Material Safety Data Sheet (MSDS). Carus provides a MSDS to all customers and others directly involved in handling the products, and to other stakeholders upon request through the company website. All of the pertinent handling information is reemphasized in Product Data (specification) Sheets and in Technical Bulletins targeted to specific uses of phosphates.

Carus also provides customers advice and assistance in the design and construction of equipment used to safely handle phosphates. For example, municipal water treatment authorities are offered bulk liquid dosing options.

Carus has prepared a series of Technical Briefs that advise customers how to safely and effectively use phosphates.

In addition Carus provides PowerPoint safety presentations given by the Technical Services Department or trained personnel. In many municipal bids this is written in as a requirement of the vendor.
Regulatory Compliance Information:

TSCA:
All components in this product are listed on the TSCA inventory.
CERCLA Hazardous Substances and corresponding RQs:
CAS# 7758-29-4 has an RQ of 5000 lbs.
SARA Section 302 Extremely Hazardous Substances:
None of the chemicals in this product have a TPQ.
SARA Codes:
Acute
Section 313:
CAS # 7733-02-0, 7646-85-7 and 7779-90-0 are reportable under Section 313.
Clean Air Act:
This material does not contain any hazardous air pollutants and do not contain any Class 1 or Class 2 ozone depletors.
Clean Water Act:
CAS # 7664-38-2, 7647-01-0, 7733-02-0, 7646-85-7 and 7779-90-0 are listed as Hazardous Substances under the CWA.
None of the chemicals in this product are listed as Priority Pollutants under the CWA.
Zinc compounds are listed as Toxic Pollutants under the CWA.
OSHA:
None of the chemicals in this product are considered highly hazardous by OSHA.
State:
CAS # 7647-01-0, 7733-02-0, 7646-85-7 and 7779-90-0 are on the state lists from CA, PA, MA, and NJ.
CAS # 7681-38-1 is on the state lists from NJ.
California Prop 65:
California No Significant Risk Level: None of the chemicals in this product are listed.
Canada - DSL/NDSL:
All components are listed on Canada's DSL list
Canada – WHMIS:
CAS# 7681-38-1, 7664-38-2, and 7647-01-0 could be classified as hazardous in accordance with the hazard criteria of the Controlled Products Regulations.
Canadian Ingredient Disclosure List:
CAS # 7681-38-1, 7664-38-2, 7647-01-0, 7733-02-0, and 7646-85-7 are listed on the Canadian Ingredient Disclosure List.
RCRA:
When discarded, the liquid products are considered as a hazardous waste because of its low pH (D002, Compound/characteristic: Corrosivity) as that term is defined by the Resource, Conservation and Recovery Act (RCRA), 40 CFR 261. The empty containers should be rinsed clear of any residues before disposal.
Transport Information:
All liquid products are classified as corrosive because of its pH and are regulated by DOT, TDG, IMDG and IATA. Some solid products be classified as corrosive because of its pH and or the presence of CAS# 7320-34-5 and is regulated by DOT, TDG, IMDG and IATA.